CHEM 162.08 General Chem II Winter 2009
SYLLABUS, POLICIES, AND PROCEDURES

Instructor: Dr. Julie A. Bowman
Office: IB 2423C #17
E-mail: JBowman@sccd.ctc.edu
Phone: (206) 526-7004
Office hours: Mon and Wed 5:30 - 6pm in AS1519
Course website: http://facweb.northseattle.edu/jabowman
Location and Time: AS1519 6 – 9:50pm Mondays and Wednesdays

Materials (available at the Bookstore, unless otherwise noted)
- Student Study Guide (optional)
- Student Solutions Manual (optional)
- Laboratory materials, available on the course website (required)
- Lab notebook, safety goggles, calculator (all required)

Course Overview
- Chapters 9-16 in Silberberg text
- Laboratory experiments (7 total)
- Homework, Quizzes and Exams

In the lab portion of the course, you will conduct laboratory exercises that emphasize and apply the concepts learned in lectures, and develop laboratory, data analysis, and scientific writing skills.

Grading
Your grade is based on homework, quizzes, laboratory, and exam performance. Attendance at all lectures and laboratories will prove to be an essential component of your performance. Homework will typically be due one week following completion of each chapter and will be due at the beginning of class. All or only part of each assignment may be graded. You are responsible for checking answers to all assignments, which will be posted on the course website. Lab reports will be due at the beginning of class one week following completion of the experiment. You will turn in your own lab report written in your own words, although are encouraged to discuss the experiments with other students. Identical lab reports and homework assignments will result in each student involved receiving a zero score on the assignment. Quizzes will be at the beginning of class on the dates specified, with the lowest quiz score dropped. Each exam will cover lecture and text material with the final exam cumulative over the entire course.

- Homework (8) 5 pts each
- Quizzes (9) 10 pts each
- Exams (2) 100 pts each
- Laboratory Reports (7) 30 pts each
- Cumulative Final Exam (1) 200 pts
There will be no make-up quizzes or laboratory experiments. If you have an emergency and excused absence on an exam day, contact me immediately. E-mail is the best method of contact.

Regrades. For a regrade, a brief explanation should be written and attached to the document and submitted within one week from the date the assignment was initially returned to you. The explanation should include why you think you deserve any additional points. I reserve the right to regrade the entire assignment, which may result in a final score lower than the initial score received. Regrades are your opportunity to correct grading errors, not an opportunity to beg for additional points.

Late assignments. Late assignments will be accepted with a 30% deduction for each class day it is late. Assignments will not be accepted once an answer key has been posted.

Laboratory
In the lab portion of the course, you will conduct laboratory exercises that:
- Emphasize and apply the concepts learned in lectures
- Develop laboratory, data analysis, and scientific writing skills

Attendance is mandatory by the start of the lab period and may result in a penalty upon late arrival. Always arrive to lab with the prelab assignment completed (the prelab will be due at the beginning of the lab period), your notebook prepared for the day’s experiment (title, purpose, and procedure sections), any necessary documents, your calculator, appropriate attire, and of course your safety goggles! Safety for everyone is of primary importance. Proper clothing must be worn at all times. Unnecessarily exposed skin is at risk from accidental spills, therefore shorts, short skirts, or open-toed shoes are not allowed in the laboratory. Respect all chemicals and work carefully. Dispose of all materials appropriately. Please do not leave until you have cleaned up your work area as well as general lab areas. Leaving a messy laboratory may result in a point deduction on your lab write-up. Lab write-ups will be due at the beginning of the lab period on the due date. There will be no make-up labs. Goggles must be worn in the classroom while experiments are undertaken. Food and drink are NOT allowed in the room. Since partners share glassware, both are responsible for any broken glassware and fees must be paid in order to receive your grade.

Policies
Cheating and plagiarism WILL NOT BE TOLERATED and will automatically result in a score of zero. The student may be reported to a disciplinary committee, which will determine the appropriate punishment, including the possibility of expulsion. Although students are encouraged to work together, all turned in work must be original and in your own words.

Attendance is not part of your grade, but poor attendance will result in a lower grade due to missed assignments as well as diminishing your understanding of the material. If you miss a class, it is your responsibility to obtain missed material from classmates and the course website. If you know you will be absent, contact me ASAP to make any necessary arrangements.
<table>
<thead>
<tr>
<th>Week 1</th>
<th>Jan 5</th>
<th>Intro, Syllabus, Chapter 9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jan 7</td>
<td>Quiz 1, Lab check-in, Chapters 9 and 10</td>
</tr>
<tr>
<td>Week 2</td>
<td>Jan 12</td>
<td>Quiz 2, Chapter 10</td>
</tr>
<tr>
<td></td>
<td>Jan 14</td>
<td>Lab 1: VSEPR</td>
</tr>
<tr>
<td>Week 3</td>
<td>Jan 19</td>
<td>Holiday, no class</td>
</tr>
<tr>
<td></td>
<td>Jan 21</td>
<td>Quiz 3, Chapter 11, Lab 1 report due</td>
</tr>
<tr>
<td>Week 4</td>
<td>Jan 26</td>
<td>Lab 2: Separation of Plant Pigments</td>
</tr>
<tr>
<td></td>
<td>Jan 28</td>
<td>EXAM 1, Chapter 11</td>
</tr>
<tr>
<td>Week 5</td>
<td>Feb. 2</td>
<td>Lab 3: Synthesis of Biodiesel, Lab 2 report due</td>
</tr>
<tr>
<td></td>
<td>Feb. 4</td>
<td>Quiz 4, Chapter 12</td>
</tr>
<tr>
<td>Week 6</td>
<td>Feb. 9</td>
<td>Lab 4: Molar Heat of Fusion of Ice, Lab 3 report due</td>
</tr>
<tr>
<td></td>
<td>Feb. 11</td>
<td>Quiz 5, Chapters 12 and 13</td>
</tr>
<tr>
<td>Week 7</td>
<td>Feb. 16</td>
<td>Holiday, no class</td>
</tr>
<tr>
<td></td>
<td>Feb. 18</td>
<td>Lab 5: Molar Mass by Freezing Point Depression, Lab 4 due</td>
</tr>
<tr>
<td>Week 8</td>
<td>Feb. 23</td>
<td>Lab 6: Factors Affecting Rates</td>
</tr>
<tr>
<td></td>
<td>Feb. 25</td>
<td>Quiz 6, Chapter 13, Lab 5 report due</td>
</tr>
<tr>
<td>Week 9</td>
<td>Mar. 2</td>
<td>Quiz 7, Chapter 16</td>
</tr>
<tr>
<td></td>
<td>Mar. 4</td>
<td>Lab 7: H₂O₂ Kinetics and Check-out, Lab 6 report due</td>
</tr>
<tr>
<td>Week 10</td>
<td>Mar. 9</td>
<td>EXAM 2, Chapter 16</td>
</tr>
<tr>
<td></td>
<td>Mar. 11</td>
<td>Chapter 14, Lab 7 report due</td>
</tr>
<tr>
<td>Week 11</td>
<td>Mar. 16</td>
<td>Quiz 8, Chapters 14 and 15</td>
</tr>
<tr>
<td></td>
<td>Mar. 18</td>
<td>Quiz 9, Chapter 15</td>
</tr>
<tr>
<td>Week 12</td>
<td>Mar. 23</td>
<td>Chapter 15, Review</td>
</tr>
<tr>
<td></td>
<td>Mar. 25</td>
<td>FINAL EXAM</td>
</tr>
</tbody>
</table>
Keys to Success in this Course

- Attend ALL classes and arrive prepared, bring lecture notes obtained from the course website, pay close attention, and take notes
- Chemistry is sequential and hierarchical; you must learn and understand today’s lecture before you can expect to understand tomorrow’s lecture. Find a place that allows for uninterrupted study. Read through text material and class notes to be covered in the next lecture
- Take time to proof-read your work
- Show your work so that you may receive partial credit
- Come see me in office hours!
- Do not fall behind. Catching up once behind is extremely difficult
- Complete all assigned work by the deadlines
- Do not cheat or plagiarize
- If you miss a class, contact me to make any necessary arrangements
- Actively participate in class. Students are encouraged to ask questions, answer questions, and discuss topics in class.
- Practice for the exams by working as many problems as possible
- Talk chemistry with fellow students
- Be respectful of other students and the instructor

Laboratory Tips

Before Lab:
- Download the lab from the webpage
- Read the procedure carefully
- Answer the prelab questions

During Lab:
- Arrive on time and prepared with lab notebook, goggles, appropriate attire and calculator
- Hand in your prelab and lab report at the beginning of class
- Carry out the experiment according to the procedure
- Record all data and observations in your lab notebook
- Clean up when finished

After Lab:
- Prepare your lab report according to the format guide on the next page
LABORATORY WRITE-UP EXPECTATIONS
(typed and proof-read)

Name
Date

EXPERIMENT TITLE

PURPOSE/METHOD:
Write a couple sentences here about the purpose of the experiment. Why are you doing the experiment and what the experiment will enable you to achieve/learn? A brief statement about how the experiment will do this is also appropriate, including any critical mathematical formulas.

PROCEDURE:
Describe the experimental procedure as you carried it out in lab such that someone else could read it and do your exact experiment. Avoid use of “I”, “we”, etc. and write in past tense. For example, your sentence might be: “3.0 grams of NaCl were weighed out and placed in a 100 mL beaker containing 50 mL of water.” Know who you are writing to… I am your audience here and I know, for example, that when you weigh something out it will be weighed on a balance, so you don’t need to tell me that you used a balance.

DATA AND CALCULATIONS:
Include data tables and examples of your calculations (calculations may be hand written, but make sure they are legible). Make sure all data collected during the experiment is included. For calculations, make sure that the reader can follow every step in the calculation. Don’t forget units!

RESULTS AND DISCUSSION:
State your experimental results and the results you obtained as a result of any calculations. You may choose to also present your results in a table if that is easier. After stating the experimental results, write a paragraph or two about what the results mean. How do your results support or refute the intended purpose of the experiment? If your results do not support the experimental purpose, what might have happened? In this section you should discuss any unusual observations and what impact they might have had on the experiment/how something might have caused an unintended result.