Lecture 8

Articulations

Articulations

• Body movement occurs at joints (articulations) where 2 bones connect
• Weakest parts of the skeleton
• Articulation – site where two or more bones meet
• Functions of joints
 – Give the skeleton mobility
 – Hold the skeleton together

Joint Structure

• Determines direction and distance of movement (range of motion)
• Joint strength decreases as mobility increases

Classification of Joints: Structural

• Structural classification focuses on the material binding bones together and whether or not a joint cavity is present
• The three structural classifications are:
 – Fibrous
 – Cartilaginous
 – Synovial

Structural Classification

<table>
<thead>
<tr>
<th>Structural Category</th>
<th>Structural Type</th>
<th>Functional Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone fusion</td>
<td>Synostosis</td>
<td>Synarthrosis</td>
</tr>
<tr>
<td>Fibrous joint</td>
<td>Suture</td>
<td>Synarthrosis</td>
</tr>
<tr>
<td></td>
<td>Gomphosis</td>
<td>Synarthrosis</td>
</tr>
<tr>
<td></td>
<td>Syndesmosis</td>
<td>Amphiarthrosis</td>
</tr>
<tr>
<td>Cartilaginous joint</td>
<td>Synchondrosis</td>
<td>Synarthrosis</td>
</tr>
<tr>
<td></td>
<td>Symphysis</td>
<td>Amphiarthrosis</td>
</tr>
<tr>
<td>Synovial joint</td>
<td>Monoaxial</td>
<td>Diarthrosis</td>
</tr>
<tr>
<td></td>
<td>Biarticular</td>
<td>Diarthrosis</td>
</tr>
<tr>
<td></td>
<td>Triarticular</td>
<td>Diarthrosis</td>
</tr>
</tbody>
</table>

Overview

• Joint classifications: structural and functional
• Types of joints by functional classification
• Synovial joint detail
• Movements at synovial joints
• Classification of synovial joints by shape
• Examples of joints
• Injuries
• Arthritis
Structural Classifications

- Bony (fused)
- Fibrous (collagen fibers)
- Cartilaginous (cartilage)
- Synovial (synovial fluid)

Classification of Joints: Functional

- Functional classification is based on the amount of movement allowed by the joint
- The three functional classes of joints are:
 - Synarthroses – immovable
 - Amphiarthroses – slightly movable
 - Diarthroses – freely movable

Functional Classification

<table>
<thead>
<tr>
<th>Functional Category</th>
<th>Structural Category and Type</th>
<th>Description</th>
<th>Example(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synarthroses (immovable)</td>
<td>Suture</td>
<td>Bones are interlocked</td>
<td>Between pairs of ribs, between ends of bones of facial bones</td>
</tr>
<tr>
<td>Synarthroses (immovable)</td>
<td>Gomphosis</td>
<td>Fibrous connection</td>
<td>Binds teeth to sockets</td>
</tr>
</tbody>
</table>

Synarthroses 1 of 2

- **Suture**
 - Bones are interlocked
 - Bound by dense fibrous connective tissue
 - Found only in skull

- **Gomphosis**
 - Fibrous connection (periodontal ligament)
 - Binds teeth to sockets

Synarthrosis: Suture

![Synarthrosis: Suture](figure_8_1a)
Synarthroses 2 of 2

- **Synchondrosis**
 - A rigid cartilaginous bridge between 2 bones:
 - epiphyseal cartilage of long bones
 - between vertebrosternal ribs and sternum
- **Synostosis**
 - Fused bones, immovable:
 - metopic suture of skull
 - epiphyseal lines of long bones

Amphiarthroses

- Also called *slightly moveable joints*
- Can be fibrous or cartilaginous connections

Functionally:
- More moveable than synarthrosis
- Stronger than freely movable joint
- **Types:**
 - Syndesmosis
 - Symphysis

2 Types of Amphiarthroses

- **Syndesmosis:**
 - bones connected by *ligaments*
 - e.g. between tibia and fibula
- **Symphysis:**
 - bones separated by *fibrocartilage*
 - Examples?
Diarthroses

- Synovial joints
- Also called freely moveable joints
- At ends of long bones
- Found within articular capsules (continuous with periosteum) lined with synovial membrane and filled with fluid
- Include all limb joints and many others
- Subdivided by the type of motion each can undergo

Synovial Joints: General Structure

- Synovial joints all have the following
 - Articular cartilage
 - Joint (synovial) cavity
 - Articular capsule
 - Synovial fluid
 - Reinforcing ligaments

Synovial Joints: General Structure

- Articular cartilage: pads articulating surfaces within articular capsules to prevent bones from touching
- Synovial fluid lubricates the smooth surfaces, contains proteoglycans secreted by fibroblasts (from where?)
 Functions:
 1. Lubrication
 2. Shock absorption
 3. Nutrient distribution – from areolar tissue of synovial membrane to the articular cartilage and fibrocartilage pads

Synovial membrane

- Has incomplete epithelium
- Areolar tissue underneath has rich blood supply
- Creates synovial fluid and proteoglycans (from fibroblasts) to make it viscous
- No blood supply enters the joint itself

Synovial Joints: Friction-Reducing Structures
Synovial Joints: Stability

- **Stabilizing Factors** - prevent injury by limiting range of motion:
 - Articular surfaces – shape determines what movements are possible
 - Ligaments – unite bones and prevent excessive or undesirable motion
 - Muscle tendons across joints acting as stabilizing factors, are kept tight at all times by muscle tone

Accessory structures Part 1

- **Cartilages**: Cushion the joint
 - Articular hyaline cartilage
 - Fibrocartilage meniscus (articular disc)
- **Bursa**: Cushion areas where ligaments, muscles, skin, tendons, or bones rub together
 - Flattened, fibrous sacs lined with synovial membranes and containing synovial fluid
 - Tendon sheath: elongated bursa that wraps completely around a tendon

Accessory structures Part 2

- **Fat Pads**: Protect articular cartilages
 - Superficial (overlying) to the joint capsule
- **Accessory Ligaments**: Support, strengthen joints
- **Tendons**: Attach to muscles around joint to help support it

Synovial Joints: Movement

- The two muscle attachments across a joint are:
 - Origin – attachment to the immovable bone
 - Insertion – attachment to the movable bone
- Described as movement along transverse (horizontal), frontal, or sagittal planes

Basic types of dynamic motion

- Linear motion (gliding)
- Angular motion
- Rotation

Linear Motion

- One flat bone surface glides or slips over another similar surface
- Examples – intercarpal and intertarsal joints, and between the flat articular processes of the vertebrae

Pencil maintains vertical orientation, but changes position
Angular Motion

• Pencil maintains position, but changes orientation
 – Tip stays fixed; pencil does not rotate
• Many examples

Angular Motion

• Flexion — bending movement that decreases the angle of the joint
• Extension — reverse of flexion; joint angle is increased
• Dorsiflexion and plantar flexion — up and down movement of the foot
• Abduction — movement away from the midline
• Adduction — movement toward the midline
• Circumduction — movement describes a cone in space

Angular Motion: Circumduction

• Angular motion in a circle
 – Again, tip does not rotate

Synovial Joints: Range of Motion

• Nonaxial — slipping movements only
• Monaxial/Uniaxial — movement in one plane
• Biaxial — movement in two planes
• Triaxial — movement in or around all three planes

Types of Movements at Synovial Joints

• Terms describe:
 – plane or direction of motion
 – relationship between structures
• In the anatomical position, all joints except one are at full extension

Rotation

• NOT angular
• Pencil maintains position and orientation, but spins
• Example — shaking your head
Flexion/Extension

- Angular motion in the Anterior–posterior plane
- Flexion reduces angle between elements
- Extension increases angle between elements

Hyperextension

- Angular motion
- Extension past anatomical position

Angular Movement – F/E

Dorsiflexion and Plantar Flexion

- **Dorsiflexion:**
 - flexion at ankle (lifting toes)
 - is "true flexion"
- **Plantar flexion:**
 - extension at ankle (pointing toes)

Angular Movement - Hyperextension

Hyperextension

- Angular motion
- Extension past anatomical position
Abduction and Adduction

- Both are Angular motion in the Frontal plane
- Abduction moves away from longitudinal axis
- Adduction moves toward longitudinal axis

Angular Movements - Ab/Ad/Circum

Circumduction

- Angular motion in a circle without rotation

Rotation

- The turning of a bone around its own long axis
- Left or right rotation
- Medial rotation (inward rotation):
 - rotates toward axis
- Lateral rotation (outward rotation):
 - rotates away from axis
- Examples
 - Between first two vertebrae
 - Hip and shoulder joints

Special Movements

- Supination and pronation
- Inversion and eversion
- Protraction and retraction
- Elevation and depression
- Opposition

Special Movements

(a) Supination (S) and pronation (P)
Special Movements

Figure 8.6b

(b) Inversion and eversion

Special Movements

Figure 8.6c

(c) Protraction and retraction

Special Movements

Figure 8.6d

(d) Elevation and depression

Special Movements

Figure 8.6e

(e) Opposition

Lateral Flexion

- Bends vertebral column from side to side

Figure 9.12

MOVIE

- Angular motions
Classification of Synovial Joints by Shape

- Gliding/Plane
- Hinge
- Pivot
- Ellipsoidal
- Saddle
- Ball-and-socket

Gliding Joints
- Flattened or slightly curved faces
- Limited motion (only examples of nonaxial)
- Also called linear motion
- 2 surfaces slide past each other:
 - between carpal or tarsal bones

<table>
<thead>
<tr>
<th>Types of Synovial Joints</th>
<th>Movement</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gliding Joint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hinge Joint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pivot Joint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ellipsoidal Joint</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hinge Joints
- Cylindrical projections of one bone fits into a trough-shaped surface on another
- Angular motion in a single plane (monaxial)
- Flexion/extension only
- Elbow, knee

<table>
<thead>
<tr>
<th>Types of Synovial Joints</th>
<th>Movement</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hinge Joint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ellipsoidal Joint</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pivot Joints
- Rounded end of one bone protrudes into a “sleeve,” or ring, composed of bone (and possibly ligaments) of another
- Rotation only (monaxial)
- Shaking your head

<table>
<thead>
<tr>
<th>Types of Synovial Joints</th>
<th>Movement</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pivot Joint</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ellipsoidal Joints
- Oval articular face within a depression
- Motion in 2 planes (baxial)
- Some wrist joints (e.g. radiocarpal)
Saddle Joints

• 2 concave faces, straddled (biaxial)
• Thumb (carpometacarpal)

Ball-and-Socket Joints

• A spherical or hemispherical articular face head of one bone articulates with a cuplike socket of another (triaxial)
• Shoulder, hip

MOVIE

• Types of synovial joint motion

Specific joint examples

Vertebrae, shoulder, elbow, hip, knee

IMPORTANT

• You DO NOT need to know the names of specific ligaments in the examples that follow. Only learn the general concepts about these joints (and the terms listed in blue).
• You DO need to know what type of joint is found at any site in the body

Intervertebral Articulations
Intervertebral Articulations

- C2 to L5 spinal vertebrae articulate in two places:
 - at inferior and superior articular processes
 - between adjacent vertebral bodies
 - symphyseal joints (symphysis = fibrocartilage pad)
- The atlas and axis have a pivot joint (monaxial synovial)

Intervertebral Discs

- Intervertebral discs:
 - pads of fibrocartilage that separate vertebral bodies
- Slipped (bulging) disc:
 - bulge in outer anulus fibrosus of disc
 - invades vertebral canal, may press on nerves or cord
- Herniated disc:
 - Inner, gelatinous nucleus pulposus breaks through anulus fibrosus
 - presses on spinal cord or nerves

Damage to Intervertebral Discs

Movements of the Vertebral Column

- Flexion/Extension
 - bends anteriorly and posteriorly
 - Caused by small gliding movements of adjacent vertebrae
- Lateral flexion:
 - bends laterally
- Rotation

Temporomandibular Joint (TMJ)

- Mandibular condyle articulate with the temporal bone
- Two types of movement
 - Hinge – depression and elevation of mandible
 - Side to side – (lateral excursion) grinding of teeth

Temporomandibular Joint

Figure 9–8

Figure 8.13a, b
Activity
• Get in small groups
• Compare and contrast the shoulder, hip, and knee joints on the basis of:
 – Range of motion
 – Stability/Protection
 – Injury frequency

The Shoulder Joint
• Also called the glenohumeral joint:
• Ball-and-socket triaxial diarthrosis in which stability is sacrificed to obtain greater freedom of movement
• Head of humerus articulates with the glenoid fossa of the scapula
• Allows more motion than any other joint
• Is the least stable
• Supported by skeletal muscles, tendons, ligaments

Shoulder Stability
• Weak stability is maintained by:
 – Thin, loose joint capsule
 – Four ligaments – coracohumeral, and three glenohumeral
 – Tendon of the long head of biceps, which travels through the intertubercular groove and secures the humerus to the glenoid cavity
 – Rotator cuff (four tendons) that encircles the shoulder joint and blends with the articular capsule

Socket of the Shoulder Joint
• Glenoid labrum:
 – deepens socket of glenoid cavity
 – fibrocartilage lining
 – extends past the bone
Processes of the Shoulder Joint

- **Acromion** (clavicle) and **coracoid process** (scapula):
 - project laterally, superior to the humerus
 - help stabilize the joint
- **Shoulder Separation**
 - Partial or complete dislocation of **Acromioclavicular joint**

Shoulder Muscles (FYI)

- Also called **rotator cuff**:
 - **supraspinatus**
 - **infraspinatus**
 - **subscapularis**
 - **teres minor**

The Hip Joint

- **Ball-and-socket triaxial diarthrosis**
- Head of the femur articulates with the acetabulum
- Socket of acetabulum is extended (made larger) by fibrocartilage **acetabular labrum**
- Good range of motion, but limited by the deep socket and strong ligaments
- Stronger than shoulder, but more limited range of motion

Hip (Coxal) Joint

- **Acetabular labrum**
- **Iliofemoral ligament**
- **Pubofemoral ligament**
- **Ischiofemoral ligament**
- **Ligamentum teres**

Hip Stability

- **Acetabular labrum**
- **Iliofemoral ligament**
- **Pubofemoral ligament**
- **Ischiofemoral ligament**
- **Ligamentum teres**
The Knee Joint

- A complicated hinge joint
- Largest and most complex joint of the body
- Allows flexion, extension, and limited rotation
- Three joints in one surrounded by a single joint cavity
 - Femoropatellar joint
 - Lateral and medial tibiofemoral joints (at medial and lateral condyles)
- Transfers weight from femur to tibia

Menisci of the Knee

- Medial and lateral menisci:
 - fibrocartilage pads
 - one at each femur–tibia articulation
 - cushion and stabilize joint
 - give lateral support
- Standing with legs straight "locks" knees by jamming lateral meniscus between tibia and femur which may interrupt venous return from lower leg

FYI: 7 Ligaments of the Knee Joint

- Patellar ligament (anterior)
- 2 popliteal ligaments (posterior)
- Anterior and posterior cruciate ligaments (inside joint capsule)
- Tibial collateral ligament (medial)
- Fibular collateral ligament (lateral)

Knee Ligaments and Tendons – Anterior surface

- Tendon of the quadriceps femoris muscle
- Patellar ligament
- Lateral and medial patellar retinacula
- Fibular and tibial collateral ligaments
Knee – Interior Supporting Structures

- All inside the joint capsule:
 - Anterior cruciate ligament
 - Posterior cruciate ligament
 - Medial meniscus (semilunar cartilage)
 - Lateral meniscus

Synovial Joints: Knee – Interior Supporting Structures

Knee – Posterior Superficial View

- Adductor magnus tendon
- Articular capsule
- Oblique popliteal ligament
- Arcuate popliteal ligament
- Semimembranosus tendon

The Elbow Joint

- A stable hinge joint that allows flexion/extension only
- Articulations between humerus - radius, humerus – ulna
- Biceps brachii muscle:
 - attached to radial tuberosity
 - controls elbow motion

Articulations of the Elbow

- Humeroular joint:
 - larger articulation
 - trochlea of humerus and trochlear notch of ulna
 - limited movement
- Humeroradial joint:
 - smaller articulation
 - capitulum of humerus and head of radius

Synovial Joints: Elbow

- Annular ligament
- Ulnar collateral ligament
- Radial collateral ligament
Injuries: Sprains and Strains

Sprain: ligaments with torn collagen fibers
- Partially torn ligaments slowly repair themselves
- Completely torn ligaments require prompt surgical repair

Strain: Muscles with torn fibers, also called “pulling a muscle”

Injuries: dislocations

- **Dislocation (luxation)**:
 - Articulating surfaces forced out of position
 - Damages articular cartilage, ligaments (sprains), joint capsule
- **Subluxation**:
 - A partial dislocation

Cartilage Injuries

- The snap and pop of overstressed cartilage
- Common aerobics injury
- Repaired with arthroscopic surgery (questionable effectiveness)

Inflammatory and Degenerative Conditions

- **Bursitis**
 - An inflammation of a bursa, usually caused by a blow or friction
 - Symptoms are pain and swelling
 - Treated with anti-inflammatory drugs; excessive fluid may be aspirated
- **Tendonitis**
 - Inflammation of tendon sheaths (which are enlarged bursa) typically caused by overuse
 - Symptoms and treatment are similar to bursitis
Arthritis

- All forms of rheumatism that damage articular cartilages of synovial joints
- More than 100 different types of inflammatory or degenerative diseases that damage the joints
- Most widespread crippling disease in the U.S.
- Symptoms – pain, stiffness, and swelling of a joint

Osteoarthritis

- Caused by wear and tear of joint surfaces, or genetic factors affecting collagen formation
- Affects women more than men
- 85% of all Americans develop OA
- Generally in people over age 60
- The exposed bone ends thicken, enlarge, form bone spurs, and restrict movement
- Joints most affected are the cervical and lumbar spine, fingers, knuckles, knees, and hips
- Treatments include glucosamine sulfate and CSPG to decreases pain and inflammation

Rheumatoid Arthritis

- Chronic, inflammatory, autoimmune disease of unknown cause
- Involves the immune system
- Usually arises between the ages of 40 to 50, but may occur at any age
- Signs and symptoms include joint tenderness, anemia, osteoporosis, muscle atrophy, and cardiovascular problems
 - The course of RA is marked with exacerbations and remissions
- Treatments include Enbrel, Remicade, Humira, methotrexate

Developmental Aspects of Joints

- By embryonic week 8, synovial joints resemble adult joints
- Few problems occur until late middle age
- Advancing years take their toll on joints:
 - Ligaments and tendons shorten and weaken
 - Intervertebral discs become more likely to herniate
 - Most people in their 70s have some degree of OA

Summary

- Joint classifications: structural and functional
- Types of joints by functional classification
- Synovial joint detail
- Movements at synovial joints
- Classification of synovial joints by shape
- Examples of joints
- Injuries
- Arthritis