SYNTHESIS OF AN AZO DYE

This is a 2 part lab in which you will synthesize an Azo dye (part A), and stain various fabrics with your dye (part B).

Part A

In this lab you are going to synthesize an azo dye. You may not have thought about it before but; what is it about a dye that makes it colored? Dyes are organic molecules that selectively absorb wavelengths of light within the visible range of the electromagnetic spectrum (400-800 nm). The human eye responds to wavelengths within this range. The white light we receive from the sun contains all the wavelengths within the visible range. When an object absorbs a particular wavelength, we see the wavelengths that are left over, and the object appears colored. Filtering orange light out of “white” light, for example, results in blue-green (cyan) hue. The hue resulting from the removal of a color from white light is the latter’s complementary color.

<table>
<thead>
<tr>
<th>Color absorbed</th>
<th>Wavelength absorbed (nm)</th>
<th>Color observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>647-700</td>
<td>Green</td>
</tr>
<tr>
<td>Orange</td>
<td>585-647</td>
<td>Cyan (green-blue)</td>
</tr>
<tr>
<td>Yellow</td>
<td>570-585</td>
<td>Blue</td>
</tr>
<tr>
<td>Green</td>
<td>491-570</td>
<td>Red</td>
</tr>
<tr>
<td>Blue</td>
<td>424-491</td>
<td>Yellow</td>
</tr>
<tr>
<td>Violet</td>
<td>400-424</td>
<td>Yellow-green</td>
</tr>
</tbody>
</table>

So now what determines what wavelength is absorbed? The color in dyes is the consequence of the presence of a chromophore. Chromophores in dyes are generally large systems of conjugated double bonds (alternating double single bonds). It is this delocalized electron system that absorbs the energy from the light. For example, if the electrons in the dye require only a small amount of energy to be rearranged into new energy state, then the substance absorbs a low energy wavelength (λ). The longer the wavelength the lower the energy ($E = \frac{hc}{\lambda}$). If you look at the Table above you will see that the longest wavelength is associated with the absorption of red light. If the incident light is white and red light is absorbed, then the light reflected is perceived as green (the complementary color of red). If a lot of energy is required for the electrons promoted to a higher energy state, then it absorbs only a short wavelength light, since short wavelengths correspond to high energy. If it absorbs blue light, then the light it reflects is perceived as yellow. In general, the more conjugation (more double bonds) you have in a dye the less energy it takes to excite the electrons.

But there is more to it than that. While the chromophore is the color-producing portion of the dye molecules there are other factors. Dyes also contain auxochromes, which are a group of atoms attached to a chromophore that modify the ability of that chromophore to absorb light. In general, auxochromes influence the intensity of the dye; but they can also provide a site by which the dye can chemically bond to the fabric.
Examples of chemical groups that are chromophores and auxochromes are shown below.

<table>
<thead>
<tr>
<th>Chromophores</th>
<th>Auxochromes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aryl group</td>
<td>CH₃</td>
</tr>
<tr>
<td>Double bonds</td>
<td>O-CH₃</td>
</tr>
<tr>
<td>Azo group</td>
<td>OH</td>
</tr>
<tr>
<td></td>
<td>NH₂</td>
</tr>
<tr>
<td></td>
<td>SO₃Na⁺</td>
</tr>
</tbody>
</table>

In this lab you are going to synthesize a dye that contains both aryl and azo functionality’s (see above). To look at the impact of conjugation on the wavelength absorbed, let’s look at two commercially available azo dyes.

\[
\text{Sudan II } \lambda_{\text{max}} = 493 \\
\text{Sudan IV } \lambda_{\text{max}} = 520
\]

Notice that Sudan IV has a more extensive system of conjugation and thus absorbs a longer, lower energy wavelength.

Life would be simple if we could just look at conjugation but the color we see is also dependent on the auxochrome, what the dye is bound to in the fabric, the pH - the list goes on. As part of this lab you will look at the effect of a change in the pH on the color of the dye, and sometimes it is very dramatic. This is generally due to a change in the charge on the dye molecules or a change in the level of conjugation. Adding or subtracting auxochromes can also effect the electron delocalization and thus change the color. Therefore, much of the work done in dyes can be considered as “trial and error”. You just try something and see what color you get.
AZO DYE SYNTHESIS

In this experiment you will use various organic amines to synthesize your azo dye. Once the dye is synthesized you will observe the effect of pH on the color and use your dye to color a variety of fabrics. At the end of the quarter you will try to incorporate your dye into a binder to create a paint.

Azo dyes, which were developed in the mid 1800s, are one of the most common dye materials. They contain the basic structure of Ar-N=N-Ar. Their color is due to the high level of conjugation that extends through N-N double bond to the aryl unit.

Azo dyes are synthesized via the following reaction. A primary amine (R-NH₂) is converted to a diazonium salt and this is reacted with another aryl unit.

The aromatic ring can be substituted with different functional groups (auxochromes) and these substituents, due to their conjugation with the azo system, will affect the color of the dye. In this experiment you will choose which dye to synthesize from the various amines and activated aryl compounds shown on the next page. Different combinations will lead to different colors.

Synthesis of your Dye:

Choose two compounds from the list on the next page. The first must be a primary amine (NH₂). This is the compound you will react with sodium nitrite in the first step of the reaction. The second compound you choose can be any of the ‘activated aromatic’ listed in the second group of compounds. This compound will be used in the second step of the reaction when you add this to the diazonium salt that you generate in the first step.

Keep the dye you isolate!!-- later in the quarter you will try and incorporate your dye into a binder to create a paint mixture.

PRE-LAB ASSIGNMENT (also see website): Note: Write this prelab in your notebook and give a photocopy to your instructor before you begin the lab

Pick your primary amine and activated aromatic and write the reaction equation for your dye reaction. Draw the most likely azo dye product. Also consider that you may have more than one product due to ortho, para substitution parameters--If you feel that you might produce more than one product you can draw all that you feel might be possible

Create a reagent table for this reaction. The table should include names of starting materials, MW, moles and grams to be used and theoretical yield of the dye. List all amines as toxins. You do not need to list the name of the dye or any melting \ boiling point information
PRIMARY AMINES: Choose one of the below for the first step of the reaction

- Aniline
- Sulfanilamide
- Sulfanilic acid
- Chloroaniline

ACTIVATED AROMATICS: Choose one of the below for the second step of the reaction

- Aniline
- 2-naphthol
- NN-dimethylaniline
- 6-amino-2-naphthalene sulfonic acid

Part B: DYEING FABRIC

In the last part of the experiment (part B) you will use your synthesized dye to color a special swatch of fabric. The swatch is woven such that it contains bands of some of the more common fibers used in making clothing. The fibers included are both natural fibers and synthetic. Here you will explore how the interaction of the dye with the fiber affects the color.

The fibers contained in the swatch are shown below.

<table>
<thead>
<tr>
<th>Fabric type (starting a end with black thread)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetate</td>
</tr>
<tr>
<td>SEF</td>
</tr>
<tr>
<td>Arnel (bright)</td>
</tr>
<tr>
<td>Bleached cotton</td>
</tr>
<tr>
<td>Creslan 61</td>
</tr>
<tr>
<td>Dacron 54</td>
</tr>
<tr>
<td>Dacron 64</td>
</tr>
<tr>
<td>Nylon 6.6</td>
</tr>
<tr>
<td>Orlon 75</td>
</tr>
<tr>
<td>Spun silk</td>
</tr>
<tr>
<td>Polypropylene</td>
</tr>
<tr>
<td>Viscose</td>
</tr>
<tr>
<td>Wool</td>
</tr>
</tbody>
</table>
PROCEDURE

Part A. Synthesis of Azo Dye

Step 1--Formation of the diazonium salt: Add 2.0 mL of water and 20 drops of 10% sulfuric acid (H_2SO_4) to a 10 mL round bottom flask with spin bar. Add 1.0 mmole of the amine to be converted into a diazonium salt. Note: if your amine is a liquid, you can assume that one drop weighs about 0.03 g (30 mg). If the amine does not dissolve gently heat the mixture until it does. Once dissolved cool the solution in an ice-water bath and let the solution stir at 0°C for 10 minutes. Upon cooling the amine may or may not precipitate but in either case proceed to step #2

While the above solution is cooling, prepare a solution of 80 mg of sodium nitrite in 1 mL of water. Add the sodium nitrite solution dropwise to the reaction mixture. A color change may occur and the solution may become clear or remain as a suspension. Let this solution/suspension stir at 0°C for 10-15 minutes.

Step 2--Addition of the activated aromatic compound

If your activated aromatic is an amine dissolve 1.0 mmole of the amine in 2.0 mL of acetic acid in a 25 mL round bottoms flask with spin bar. If you activated aromatic is a napthol dissolve the napthol in 2.0 mL of 1 M NaOH in a 25 mL round bottoms flask with spin bar. To aid dissolving the napthol, grind the solid using a mortar and pestle and gently heat if your napthol doesn’t dissolve (be sure to cool back down before proceeding to the next step).

Cool the activated aromatic solution to 0°C. Once cooled, add the diazonium salt solution/suspension prepared in step 1, in small portions to your activated aromatic solution. Continue to stir at 0°C during the addition. There may be a color change at this point. Once all of the diazonium salt solution has been added let the solution stir at room temperature for 20 minutes. If time permits you may want to let the reaction stir longer in order to insure completion of the reaction.

Step 3. Dye color dependence on pH When step 2 is complete you want to analyze the color of your dye depending on the pH of the solution

Prepare 2 test tubes, one containing 2 mL of 1M NaOH and another containing 2 mL of 1M HCl. Add about 5 drops of your dye solution to each test tube and note the color.

Step 4. Isolation of the solid dye.

Take about ¼ of the dye mixture (1-2 mL) and set it aside for part B (dyeing fabric). To the remainder of the solution cool your dye mixture on ice to precipitate (this may take a while). Once solid has formed filter the solution. Wash the filtered solid with ice water. (Note --see next paragraph if you didn’t get any solid). Scrape the isolated solid onto a watch glass and let it dry until next period or (optional) attempt to recrystallize using acetic acid, water, ethanol or acetone as solvent. You may have to experiment around a bit to find the best system. You could also try a ‘mixed solvent’ crystallization (see section 11.10 pg 697 of PLKE) using ethanol and water.

If you didn’t isolate a solid from in the previous step, pour the colored solution into a beaker. Let the beaker stand uncovered in your drawer. Solid dye will crystallize over time. SAVE
THE SOLID DYE THAT FORMS!—Later in the quarter we will try to create paint from your solid dye by incorporating it into either Gum Arabic or Linseed oil.

Part B Dying of Fabric

Take the dye solution saved from step #4 in part A. Dilute this dye solution with 20-25 mL of distilled water. Obtain a piece of multibanded fabric and submerge the fabric into the dye solution and gently heat on a hot plate for 10-15 minutes (cover with a watch glass to avoid evaporation).

Once you are done heating, rinse with water and leave the cloth in your drawer. In some cases the dye color and intensity will change once the fabric has dried out.