1. Show the hydrolysis products of the following disaccharides

 a) [Diagram showing hydrolysis of a disaccharide]

 b) [Diagram showing hydrolysis of another disaccharide]

2. Draw a disaccharide of Mannose and allose. Let the linkage be at C1 carbon of Mannose and the C4 carbon of allose. Draw both an α and β glycosidic linkages.
3. For the monosaccharide shown on the right, answer the following questions:
 a) Which carbon is the anomeric carbon? __1__

 b) Is the sugar drawn as the α- or the β-form? __B__

 c) When the sugar is in the open chain form, which carbon determines, if the sugar is L or D? __5__

 d) When the sugar is in the open chain form, does this sugar contain a ketone or an aldehyde? __Aldehyde__

4. For each of the following disaccharide, determine the nature of the glycosidic linkage (ex: α (1→4)).

 a)

 b)

 Draw the two sugars that result from hydrolysis of the disaccharide shown in b).
5. For the following disaccharides, answer the following questions.

a) What type of glycosidic linkage exists? \(\alpha(1 \rightarrow 6) \)

b) Can at least one of the monosaccharide components exist as the open ring structure? Yes. Anomeric carbon has an OH.