Alkenes - Reactions (sec 3.6) A reaction is defined by:

- Bonds Broken → lose full octet
- Bonds formed → restores full octet

Addition Reactions

Electrophilic addition to a double bond

Reaction Mechanisms - "Arrow pushing" mechanism

Two 'Players'
1) Nucleophile Nu^- high ϵ^- density, Θ charge or S^-
2) Electrophile E^+ low ϵ^- density, Θ or S^+

Famous nucleophiles: $\text{Cl}^-, \text{Br}^-, \text{H}_2\text{O}^-, \text{CN}^-, \text{CH}_3\text{CH}_2\text{O}^-, \text{S}^-, \text{C}^-$

Famous Electrophiles: H^+, $\text{H}-\text{Br}$

Mechanism of H-Br addition to an alkene/Electrophilic addition was the bond

- Bouncing

- Both ϵ^- to bromine

- Carboxylation (High energy)

- Intermediates

- New bonds

- Old bonds lost π bond

$C-\text{H} = 108^\circ > 1$}\n
$C-\text{H} = 72^\circ$
Thermodynamics

Thermodynamic:

- Reactants → Products

Kinetics

Kinetics:

- How fast will the products be formed?

Energy

- Activation energy

Gibbs Free Energy (ΔG)

- ΔG: Gibbs Free Energy
 - ΔG^+ = ΔG_{AB}
 - ΔG = ΔG^+ + RT ln K

Equilibrium Constant (Keq)

- K_{eq} = \frac{[C][D]}{[A][B]}

Exothermic-Release Heat

ΔG is "-" → Favorable / Spontaneous

- ΔG is large → Product

Rate of Reaction

- Rate = k[A][B]

Speed

- Rate constant → ΔG^+

- ΔG^+ is large → K is small
What can you say about these reaction coordinate diagrams?

1. \(\Delta G^+ \)
2. \(\Delta G^+ \)
3. \(\Delta G^+ \)
4. \(\Delta G^+ \)

- \(\Delta G \rightarrow -\Delta G \)
- \(\Delta G^+ \) large, \(\Delta G^- \) small
- Rate \(k \) small, rate \(k \) large
- Fast reaction, slow reaction

\(\Delta G = 0 \)
\(K = 1 \)

Reaction Coordinate Diagram for the Electrophilic addition to an alkene (Carbocation)

- **Step 1**:
 - \(CH_3 \)
 - \(\text{C} = \text{C} \)
 - \(\text{Br} \)
 - \(\text{H} \)

- **Step 2**:
 - \(CH_3 \)
 - \(\text{C} = \text{C} \)
 - \(\text{Br} \)
 - \(\text{H} \)

High energy intermediate
\(\Delta G \)
\(\Delta H \)

Normal molecule
\(A + B \)
\(\Delta G \)

- **Step 1**: Carbocation
- **Step 2**: Rate determining step
Closer look at ΔG

ΔG is made up of Bonds formed vs Bonds lost and Entropy changes

$$\Delta G = \Delta H - T \Delta S$$

Randomness / disorder

Our rxn: $\text{CH}_3\text{CH} = \text{CHCH}_3 + \text{H-Br}$ $\text{CH}_3\text{CH} = \text{CHCH}_3$ $\Delta S^\circ = -$

Bonds Made: C-H, C-Br

Bonds Lost: C=C, H-Br

$\Delta H =$ Energy Bonds lost - Energy Bonds gained (Table 3.2)

$$\left(62 \text{ KJ} + 87 \text{ KJ}\right) - \left(149 \text{ KJ} \right) = -24 \text{ Kcal}$$

$\Delta G^\circ = E_q$

ΔS Value? More freedom? Less freedom of motion

$\text{A} + \text{B} \rightarrow \text{C}$ Less freedom of motion $\Delta S^\circ =$ -

$\text{A} + \text{B} \rightarrow \text{D} + \text{E}$ $\Delta S = 0$

solid + solid \rightarrow liquid + gas $\Delta S = +$

Review: Thermodynamics:

\rightarrow all $\Delta G = \Delta H - T \Delta S \rightarrow \text{Keg}$

Good Bonds Good Products

Is the reaction worth the journey? Nothing to do with the rate or ΔG°

Thermodynamic stability: \rightarrow stable product/bonds

Kinetics: \rightarrow rate/speed of reaction ΔG°, Ea

Mean mechanistic pathway

Kinetic stability: \rightarrow high barrier Large ΔG° - no rxn
Chem 241 11/2/11 Chap 4

\[\text{CH}_3 - \text{C} = \text{C} - \text{CH}_3 + \text{H} - \text{Br} \rightarrow \text{H} - \text{C} - \text{C} - \text{CH}_3 + \text{H} - \text{C} - \text{C} - \text{CH}_3 \]

1. \(\text{CH}_3 \)
2. \(\text{CH}_3 \)
3. \(\text{CH}_3 \)
4. \(\text{CH}_3 \)

Regioselectivity - H will attach at 1 more than 2

Carbocation stability:

- Lowest Energy: \(\text{SP}^2 \)
- Highest Energy: Methyl

Geometry of the Carbocation: \(\text{SP}^2 \), trigonal planar, flat, no electrons

Hyperconjugation:

\[\text{R} - \text{C} = \text{R} \]
The rate of the reaction is determined by carbocation stability. The most stable cation is 3°, followed by 2° and 1°, which is the least stable cation.

ΔG° is the energy difference between the reactant and the transition state (‡). The transition state is the highest energy point.

Are we forgetting something?

Acid pKa conjugate base

H-Br -9 → Br⁻
H-Cl -7
\(\text{H}_3\text{O}^+ \) -1.3
R-\(\text{O}^- \) 5
H₂O 15.7
CH₃OH 16