Section 2.9 Physical Properties of Organic Molecules

States of Matter:
- Gas
- Liquid
- Solid

Density, Solubility, mp, BP

What factor determines? => Intermolecular Forces/Attractions

Between molecules

\[
\begin{align*}
\text{CH}_3\text{CH}_2\text{CH}_3 & \quad \text{CH}_3\text{CH}_2\text{OH} \\
\text{BP} = -42 \degree C & \quad \text{BP} = 78 \degree C \\
\text{Gas} & \quad \text{Liquid}
\end{align*}
\]

Gas \Rightarrow BP below 25 \degree C
Liquid BP 25 \Rightarrow 300 \degree C
Solids melting point (mp) above room temp.

Types of Intermolecular Attractions

- Small separation => weak forces
- Intermediate forces
- Strong

Van der Waals

\[
\begin{align*}
\text{C} & \quad \text{Cl} \\
\text{I} & \quad \text{S} \\
\text{S} & \quad \text{Cl}
\end{align*}
\]

Very small charges => (gas)

Strong intermolecular attractions \Rightarrow High mp/BP \Rightarrow Solids

Weak intermolecular attractions \Rightarrow Low BP \Rightarrow Gas

‘Shape’ of molecules:

Higher BP?
Surface area more \Rightarrow Higher BP

Branching
Solubility Rule → "Like dissolves like" — in regards to polarity.

Solubility in H₂O

Solubility in Alkanes (Hexane)

Biological Interactions

Glucose — Sugar

Serotonin

Binding site

Imitrex
How do we 'see' molecules

Mass Spectroscopy (MS)

1. **High Energy**
2. **Electron Beam**
3. **Electron**
4. **Molecule (M)**
5. **Lose 1e⁻**
6. **M⁺**
7. **Unstable**

MW = 120

The mass spectrometers can measure the mass of a cation

Fragmentation

Parent ion

MW 120

Base peak (Tallest)

m-15 → methyl group

m-29 → CH₂CH₃

Mass Spectroscopy (MS)

- **Infrared Spectroscopy (IR)**
- **Nuclear Magnetic Resonance (NMR)**

m⁺ = radical (unpaired e⁻)

Cation

m/2 = 15

m/2 = 105

m/2 = 77

120/1 = 120
Isotopes

Carbon 12/carbon 13

^{12}C ^{13}C

Halogens

Br \rightarrow Cl

79 Br 50% 35 Cl \sim 65%

81 Br 50% 37 Cl \sim 35%

Alcohol Fragmentations

+ CH$_2$ → CH$_3$CH$_2$

A cleavage

Loss of H$_2$O

^{1}H ^{1}O ^{1}O ^{1}N ^{1}H

^{1}C ^{1}C ^{1}C ^{1}C ^{1}C

^{1}H ^{1}H ^{1}H ^{1}H ^{1}H

All compounds have unique fragmentation patterns.
How do we 'see' molecules → New eyes

1) Mass Spectroscopy (MS)
2) Infrared Spectroscopy (IR)
3) Nuclear Magnetic Resonance (NMR)

Mass Spectroscopy

\[M \text{ (molecule)} \rightarrow M^+ + e^- \]

Example

\[
\begin{align*}
\text{C}_8\text{H}_8\text{O} \\
\text{MW} = 120
\end{align*}
\]

A mass spectrometer can measure the mass of cations (must have charge)

Fragmentation

High energy

Radical

\[\text{MW} = 120 \]

\[\text{MW} = 77 \]

What is its fate?

Molecular ion → Parent ion

Base peak = most abundant (largest) tail

Spectrum

<table>
<thead>
<tr>
<th>Mass/Abundance</th>
<th>15</th>
<th>43</th>
<th>77</th>
<th>105</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>M Parent ion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular ion+ peak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ISOtopes

Carbon 12/Carbon 13

12C 13C

M + 1 peak

Halogens Br and Cl

Br 58% → 79Br
50% → 81Br

Cl 35Cl ≤ 65%
37Cl ≤ 35%

Alcohol Fragmentations

α-cleavage → to the OH

CH₃CH₂CH₂CH₃ → CN₂CH₂⁺

MW 74

α-cleavage

All compounds have unique fragmentation patterns.

what info do we get from ms?

(Molecular weight)

Fragmentation → stable cations produced
Infrared spectroscopy

Spectroscopy: How matter interacts with light (electromagnetic radiation)

Light—Both particle and wave properties

\[\text{spread out} \]

Light is spectrum of wavelengths (\(\lambda \)) and frequencies (\(\nu \))

\(\lambda \) and \(\nu \) relate to the energy of light:

\[E = \frac{hc}{\lambda} \quad \text{or} \quad E = h\nu \]

\[\text{adsorb}\]

Organic Molecules absorb light in 'Infrared' region

If full energy is absorbed \(\rightarrow \) becomes one with The molecule

In IR we use wavenumbers \(\nu \) units \(\text{cm}^{-1} \)

IR region \(400 \text{ cm}^{-1} \rightarrow 4000 \text{ cm}^{-1} \)

Lower energy \(\rightarrow \) higher energy

How do organic molecules interact with light?

- Absorb \(\rightarrow \) increase vibrational motion

Nature of the Bond C-H

[Diagram of C-H bond with stretching and bending arrows]
Bonds absorb light at different frequencies:

- \(\text{C} - \text{C} \sim 1000 \text{ cm}^{-1} \)
- \(\text{C} = \text{C} \sim 1600 - 1650 \text{ cm}^{-1} \)
- \(\text{C} = \text{C} \sim 2350 \text{ cm}^{-1} \) (High energy)
- \(\text{C} - \text{O} \sim 1000 \text{ cm}^{-1} \rightarrow 1300 \text{ cm}^{-1} \)
- \(\text{C} = \text{O} \sim 1650 \rightarrow 1750 \text{ cm}^{-1} \)
- \(\text{C} - \text{H} \sim 2900 - 3100 \text{ cm}^{-1} \)
- \(\text{O} - \text{H} \sim 3300 \text{ cm}^{-1} \)

How an IR spectrum will look —> absorption bands:

3 Things to note about each absorption band (characteristics):

1. Location cm\(^{-1}\) —> Type of bond —> look at charts

2. Intensity — How strong — How deep is the absorption
 - Polar bonds are intense
 - # of bonds determine intensity

3. Shape — Narrow OR Broad
 - O-H are usually broad
 - Hydrogen Bonding
What to Ignore in IR

What to look for/pay attention to: ≈ 1500

- O-H stretch ≈ 3200 broad \vee
- C=O stretch ≈ 1700 strong $\pm 50 \text{ cm}^{-1}$
- C-H $2900-3100 \text{ cm}^{-1}$
- C=C $\approx 2300 \text{ cm}^{-1}$ (weak)
- C≡N $\approx 2100 \text{ cm}^{-1}$ (medium)
- N-H $\approx 3200 \text{ cm}^{-1}$ (medium)

Nuances:

- Conjugation of $\ce{C=O}$: lower by about 30 cm^{-1}
- C-H sp^2 and sp^3 differences
- sp^3 C-H $\approx 2900-3000 \text{ cm}^{-1}$
- Esters $\ce{\text{O=C-R}}$: 1730 cm^{-1} higher
- O-H on acids $\ce{\text{H-O-C}}$: 1705 cm^{-1}
- sp^2 C-H $\approx 1600 \text{ cm}^{-1}$
- sp^2 C-H $\approx 1700 \text{ cm}^{-1}$ (very broad)
- Benzene $\approx 1500-2100 \text{ cm}^{-1}$ weak Band of Benzene
- $\ce{\text{C=O-N}}$ $\approx 1700 \text{ cm}^{-1}$
- $\ce{\text{C-O-H}}$ $\approx 3200-2500 \text{ cm}^{-1}$ much lower