How we come to know a chemical structure

\[m_s \rightarrow \# \text{ of carbons} \]

\[I_2 \rightarrow \text{Type of Bonds} \rightarrow \text{functional Group} \]

The last piece of the puzzle - **NMR (Nuclear Magnetic Resonance)**

- Give the carbon chain/connectivity

Theory

Hydrogen nuclei have a magnetic moment \(\textit{H} \)

When placed in a magnetic field have 2 'spin states' \(\uparrow \) \(\downarrow \)

\[E = \gamma B_0 \text{ magnetic field (that H feels)} \]

\(\Delta E = \hbar (2\pi) \) between spin states

The energy difference between spin states sets us up for Spectroscopy (\(\Delta E \))

When \(\Delta E = \text{Energy of light} - \text{light will be absorbed} \)

\[\Delta E \quad \text{"Flip the spin"} \quad \nu \]

No magnetic field

If all protons have the same \(\Delta E \) then they all give just one signal

But the \(\Delta E \) will change depending on electron density about the proton.

\[C \quad \downarrow \quad H \]

Proton feels sum of both fields + smaller due to electrons in the bond = \(\Delta E \) is smaller = easier to "flip the spin"
Protons with high e- density we call 'shielded' \(\rightarrow \) smaller AE Gap, easy to flip

Compare CH₄ and CH₃-F

- CH₄ has less e- density around H
- CH₃-F has more e- rich
- more shielded
- AE is smaller, need less energy to flip

NMR Spectra

CH₃F - AE larger

'deshielded' protons

less e- density

Chemical Shift (δ) units ppm

standard for 0 ppm \(\rightarrow \) TMS Tetramethylsilane

\[
\begin{align*}
\text{CH}_3 & \quad \uparrow 1 \quad \text{CH}_2 \quad \text{very e- rich proton/} \\
\text{CH}_3 & \quad \text{vs} 2 \quad \text{CH}_2 \quad \text{poor}
\end{align*}
\]
Chemistry 242 1/16/14

Equivalent Protons

- All equivalent protons have the same chemical shift (S).
- Non-equivalent protons do not have the same chemical shift (S).

2 Signals

- B: upfield, C- rich
- A: downfield, C-poor

3 NMR signals

- Aldehyde
- Aromatic
- Vinyl Hydrogen

Chemical Shifts (S) of Some Common Protons

- Aldehyde
- Aromatic
- Vinyl Hydrogen
- Halogen, Oxygen
- α Hydrogen: CHy Alkanes

TMS
- **Anisotropy**: Double bonds cause protons to go way down field 5-8 ppm.

- **Protons on Nitrogen + Oxygen**
 - NH_2 \rightarrow 0.5-4 ppm
 - OH \rightarrow 1.5-4 ppm
 - R-\(\dot{\text{O}}\)-H Tend to be broad

Have 3 aspects/qualities about the NMR signal N-H 1-4 ppm to be broad:

1. **Chemical Shift**: Location in ppm → Tells Type of Proton
2. **Integration**: Size of Peak/Area → From the # of Protons - 1st is H Large Peak
3. **Splitting Pattern**: How the carbons are connected.

Splitting of the Signal

- **Tri-bromo ethanol**
 - Br-\(-\text{C}-\text{C}H_A\)
 - H_8 \rightarrow 1 proton
 - H_8 \rightarrow \(\frac{1}{2}\) proton

- **Br-\(-\text{C}-\text{C}H_A\)**
 - H_8 \rightarrow 2 protons