1. Determine the value of each definite integral, based on the graph of the function f which appears below:

(a) $\int_{-2}^{2} f(x) \, dx$
(b) $\int_{4}^{0} f(x) \, dx$

2. Write down and evaluate the definite integral equal to

$$\lim_{n \to \infty} \sum_{k=1}^{n} \sqrt{x_k} \Delta x$$

where x_k are evaluation points equally spaced throughout $4 \leq x \leq 16$.

3. Calculate the average value of $f(x) = 60e^{-0.02x}$ when $0 \leq x \leq 50$.
4. Calculate the derivative of

(a) \(f(x) = e^{-3x} \sin \pi x \) \hspace{1cm} (b) \(G(x) = \ln \left(x + \sqrt{x^2 + 1} \right) \)

5. Calculate the value of each limit:

(a) \(\lim_{x \to 0} \frac{\arcsin 2x}{x} \) \hspace{1cm} (b) \(G(x) = \lim_{n \to \infty} n \ln \left(1 + \frac{4}{n} \right) \)
6. Evaluate each of the following integrals:

(a) \[\int \frac{\ln 3x}{x} \, dx \]

(b) \[\int (3t + 2)e^{-4t} \, dt \]

(c) \[\int \frac{12}{x(x - 1)(x + 1)} \, dx \]
7. Evaluate the integral \(\int \sqrt{25 - 4x^2} \, dx \)

If you use a trig substitution, you may need \(\cos^2 \theta = \frac{1 + \cos 2\theta}{2} \) and \(\sin 2\theta = 2 \sin \theta \cos \theta \).

8. Solve the differential equation

\[
\frac{dP}{dt} = -0.05P \quad \text{and} \quad P(0) = 200
\]

Then find the value of \(t \) at which \(P(t) = 25 \).
9. Consider the region bounded by the curve $y = 2^x$, the lines $x + y = 3$ and $y = 1$.

Set up integrals for (but don’t evaluate)

(a) the area of the region.

(b) the x and y coordinates of the region’s center of mass (assuming constant density)

(c) the volume of the solid of revolution obtained by rotating the region around the vertical line $x = 8$.

(d) the perimeter of the region.
10. Convert the polar equation
\[r = 8 \sin \theta \]
to an equation using rectangular coordinates \(x \) and \(y \).

11. Find parametric equations for downward motion along the parabola \(x = y^2 \).

12. Consider the polar region to the right of the line \(r = 3 \sec \theta \) and inside the circle \(r = 4 \cos \theta \).

(a) sketch the region

(b) set up a definite integral using polar coordinates for the area of this region. (no need to evaluate the integral)
13. Consider the set of parametric equations

\[
\begin{cases}
 x = t^3 + 3t^2 \\
 y = t^3 - 300t
\end{cases}
\]

(a) Horizontal tangent lines to the path of motion occur at which values of \(t \)?

(b) Vertical tangent lines to the path of motion occur at which values of \(t \)?

(c) Sketch the path by analyzing the sign of the derivatives of \(x \) and \(y \).