1. For the vectors \(u = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \), \(v = \begin{bmatrix} -4 \\ -2 \end{bmatrix} \), \(w = \begin{bmatrix} -1 \\ 3 \end{bmatrix} \) and \(G = \begin{bmatrix} 2 \\ 5 \end{bmatrix} \)

(a) is the vector \(v \) a linear combination of the vector \(u \) ?

(b) is the vector \(w \) a linear combination of the vectors \(u \) and \(v \) ?

(c) is the vector \(G \) a linear combination of the vectors \(u \) and \(v \) ?

(d) is the vector \(G \) a linear combination of the vectors \(u \) and \(w \) ?

(e) is the zero vector \(0 \) a linear combination of the vector \(u \) ?

(f) is the vector \(u \) a linear combination of the zero vector \(0 \) ?

(g) sketch all the linear combinations \(cu + dG \), where \(0 \leq c \leq 1 \) and \(0 \leq d \leq 1 \)

(h) sketch all the linear combinations \(cu + dv \), where \(0 \leq c \leq 3 \) and \(0 \leq d \leq 3 \)